DISCUSSION OF M. J. BAYARRI AND M. H. DeGROOT’S
“GAINING WEIGHT: A BAYESIAN APPROACH”

by

Nozer D. Singpurwalla

GWU/IRRA/Serial TR-87/7
17 June 1987

The George Washington University
School of Engineering and Applied Science
Institute for Reliability and Risk Analysis

Research Sponsored by

Contract N00014-85-K-0202
Project NR 042 372
Office of Naval Research

and
3-87-K-0056 VR~
U. S. Army Research Office g
Di;\ﬁ (A

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited




DISCUSSION OF M. J. BAYARRI AND M. H. DeGROOT'S
“GAINING WEIGHT: A BAYESIAN APPROACH”

by
Nozer D. Singpurwalla

The George Washington University
Washington, DC 20052

Abstract

This is an invited discussion of Professors M. J. Bayarri and M. H. DeGroot’s
paper entitled “Gaining Weight: A Bayesian Approach.” Both the paper and the
discussion are to appear in Bayesfan Statistics 3, the Proceedings of the Third

Valencia International Meeting on Bayesian Statistics, held in Altea (Spain), on June
1-5, 1987.

Key Words: Pooling Expert Opinion, Incoherence, Linear opinion pool

Accesion For

NTIS CRA&I %
DTIC TAB

Unannounced 4
Justification M%

By
Distribution |

Availability Codes

. Avail and/or
Dist Special

A-




DISCUSSION OF M. J. BAYARRI AND M. H. DeGROOT'S
“GAINING WEIGHT: A BAYESIAN APPROACH"

by
Nozer D. Singpurwalla

The George Washington University
Washington, DC 20052

This charming and well written paper addresses an interesting problem,
produces elegant results and makes for enjoyable reading. In the sequel, it also
advances the state of the art of Bayesian statistice. The issues raised below are
intended serve two purposes:

1. To stimulate more work along the avenue of research which Professors Bayarri
and DeGroot - henceforth BAD - have initiated, and
2. To argue that the framework for “gaining weight” prescribed here can be used

to show that the linear opinion pool - henceforth LOP - leads to incoherence.

Regarding 1, one can start off by drawing attention to the criticisms of the
LOP [see Genest and Zidek (1986)] and suggest as an alternative, a consideration of
the logarithmic opinion pool. The latter has the advantage of being “externally
Bayesian” [which Lindley (1985) dismisses as an “adhockery”] but suffers from the

disadvantage is that it may lead to cumbersome results.

More substantive avenues of investigation emanate from some extensions of
the formulation of this paper. To see these, focus attention on Equation (1.2) in
which B,(x), the posterior weight given by a decision maker, the “boss” (B) to the
i-th expert Si, is specified. Note that ﬁi(x) depends on ;s the prior weight given

by B to §;, and r;j(x), the experts report to B. BAD assume that Si’s colleagues are



naive and that Si's reward is solely based on the magnitude of ﬂi(x). Under the
above set-up, §; aims to maximize ﬂi(x), and to achieve this §, may resort to
dishonesty. Observe that Si’s behsavior is influenced solely by the ai’s and the
competence of Si’s colleagues. A more reslistic scenario would be one in which Si is
to be rewarded based upon both, the quality of prediction - as measured by ri(x) -
and also ﬁi(x). For such e generalization, the conditions under which honesty of Si
is always the best policy needs to be investigated. A formal mechanism for
addressing the above is facilitated via the decision tree of Figure 1 in which 9
denotes Si’s decision node, %1, denotes a random node pertaining tor j(x) — the
report of Si’s sole colleague & 7 and %2 denotes a random node pertaining to the
state of nature X taking values x. If ‘U.[ri(x), T j(")' ﬁi(x)] denotes Si‘s total utility
when X = x, 8. reports r.(x), ® = i, j, and the B assigns a posterior weight ﬂi(x) to
Si, then §; will choose that ri(x) which maximizes the expectation of U with respect
to Si’s honest distribution of X (conditional on r j(x) if r j(') is declared by & jof

averaged over the distribution of r j(-) — as perceived by § J)
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Figure 1. §,;’s Decision Tree for an Optimal Choice of r;(x).

Recall that the set-up of BAD assumes that Si’s colleagues are naive, in the
sense that they are not interested in “gaining weight”; thus their reports to the B

are indeed their honest opinions. If one were to consider the case of a single

2




colleague, say & 7 and assume that € F is in competition with si to “gain weight,” then
& two-person zero sum game would result, for now § j also has an incentive to be
dishonest. It would be interesting to see if a solution to this two person zero sum
game would result in the conclusion that honesty on the part of both Si and § j

would be the best policy.

To see why the framework for “gaining weight” given here provides a vehicle
for arguing that the LOP leads to incoberence, consider Equation (2.1). This
specifies that for given values of a, s, x and r

— or = _af
EB) = x ar+as +x ar+a 8

and that the optimal choice of r, obtained by a maximization of E(B) is

r=5 — "&b *
provided that 0 < r < 1. The recommendation of BAD that when % < (>) 0 (1), the
optimal choice of r is r = 0(1), is discomforting. It is an external intervention,
analogous to that commonly done by frequentists who set negative estimates of
variances and densities arbitrarily equal to zero. In a coherent system involving
probability calculations there should be no need for interventions—the probability
calculus must automatically lead to admissible answers. A detailed investigation of
the behavior of E(B) is therefore called for. Specifically, one needs to investigate
conditions which ensure that the value of r which gives the global maximum of E(B8)
lies between 0 and 1. Some analysis shows that there are five possible scenarios,
three of which are shown in Figure 2. Of these, it is only Scenario A which results
in a unique maximizing r which is between 0 and 1. Scenario D, with
0< A®* <1 and B* > 1, where A* = — (&/a)s and B* = 1 + (&/a) (1-5), is the dual
of Scenario C, and is omitted. Both Scenarios C and D yield one global maximum
outside [0, 1) and therefore lead to inadmissibility. Omitted also from Figure 2 is
Scenario E in which E(B8) attains a global maximum at A® and B®, both of which lie
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outside the interval [0, 1} Scenario B yields an admissible answer but it is not

unique.
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Figure 2. Behavior of the Global Maxima of E(B8).

Values of a and & which lead to each of the above scenarios, are shown in

Figure 3.
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Figure 3. Range of Values of a and & leading to Scenarios A, B, C, and E.

It is apparent from Scenario A of Figures 2 and 3, that to obtain a unique
value of r which maximizes E(8) and which is admissible, o must equal — &.

*. Thus in an opinion pool with

Furthermore, the maximizing value of ris s
a = — &, to maximize one’s posterior weight, one must report one’s colleagues

answer plus a tad more.

In order to be ensured that one can obtain at least one admissible global
maximizing value of r, @ and & must have, as a necessary (but not sufficient)
condition opposite signs. This observation supports the result of Genest and
Schervish (1985) who prescribe the conditions for the LOP to have a Bayesian
justification. Actually Scenario A with its requirement that a = — & is a

stronger statement than that of above authors.

The LOP requires that a > 0, & > 0 and oo + & = 1; however, these
conditions lead us to Scenario E (see the upper right hand quadrant of Figure 3)

which implies a violation of an axiom of probability.




By way of a few closing remarks, it is apparent that BAD have unveiled an
avenue of research in Bayesian statistics which should generate a flood of new
pepers around their ideas. It is common to see research in Bayesian statistics
center around established themes such as prior to posterior manipulations,
approximations, sensitivities, robustification, computations, hierarchicalizations,
algorithms with fancy names, and other devices which mimic the frequentists arsenal
of techniques. In contrast, the problem addressed by Professors Bayarri and
DeGroot is novel, stimulates thought and is fun to work upon. The author has
enjoyed the opportunity to read and comment on this work and would like to thank
the organizing committee for their contribution to his learning by inviting him to

attend the conference and serve as a discussant.
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